

TOWARDS A COMPREHENSIVE NOISE ASSESSMENT IN SPAIN: OPEN DATA, OPEN SOURCE, SUPERCOMPUTING

Lack of a Comprehensive View on Noise Pollution in Spain

In Spain (and likely across Europe), there is no full understanding of how **noise pollution** impacts citizens' quality of life and terrestrial ecosystems.

Strategic Noise Maps (SNMs – 4th Round) only cover:

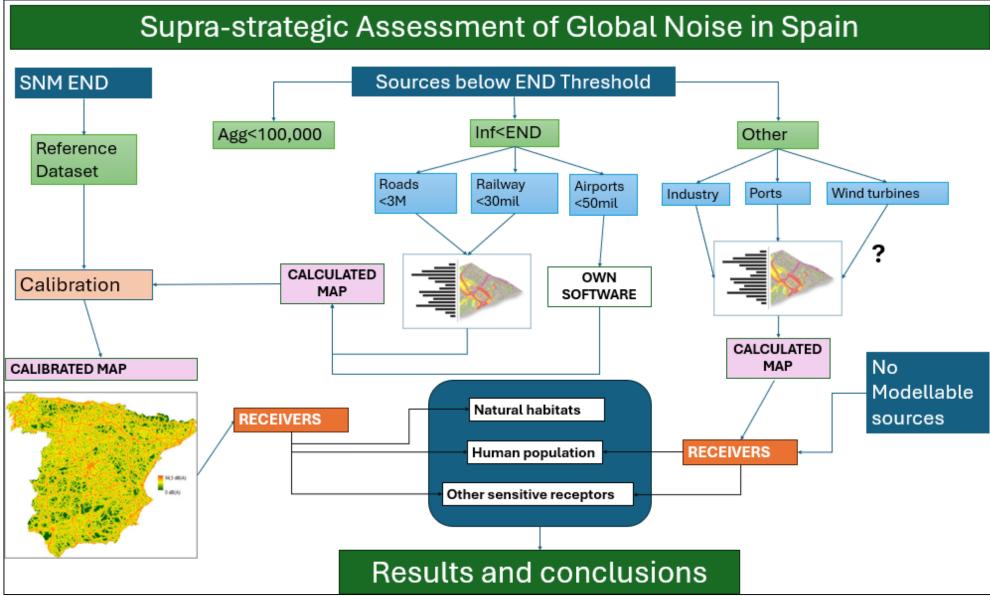
- Agglomerations > 100,000 inhabitants (64)
- Roads > 3 million vehicles/year (21,000 km)
- Railways > 30,000 trains/year (1,800 km)
- Airports > 50,000 operations/year (13)

Missing data in cities below END scope

- **87** cities (50k–100k people)
- **613** cities (10k–50k)
- **2,381** towns (1k–10k)
- **4,986** towns (<1k)

Other sources excluded from END

- **154,000** km of roads
- **21,770** km of railways
- 1,136 aircraft facilities
- **9,067** industrial facilities
- **22,000** wind turbines
- **49** state ports



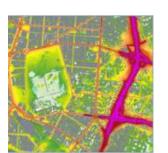
ROAD MAP

Cartographic Source Data

All from CNIG official datasets:

- Road Network
- BTN (Topographic DB)
- DTM: Digital Terrain Model (1:25,000 scale)
- DSM (MDSnE2.5): for building heights

Ministry of Transport's **open traffic datasets** (main roads)


Good Practice Guide used for roads lacking traffic data

CNOSSOS-EU reference pavement assumed for all roads

Statistic	LAEQ_Ref (dB)	LAEQ (dB)	LAEQ_Cal (dB)
Mean	56.17	59.75	54.22
Median	57.00	58.98	53.51
Std. Dev	10.60	11.85	10.41
Min	31.00	30.00	30.00
Max	101.00	96.80	86.68

3.6 dB

Mean error:

1,96 dB

Calculation Process

- Area split into 1,058 subdomains (scale 1:25,000)
- NoiseModelling + custom Python automation scripts
- Triangulation mesh: max 50 m spacing (2,500 m²)
- Delaunay algorithm: denser near buildings
- Output: Raster noise maps via interpolation of results

- Intel® Xeon® w9-3475X @2.21 GHz
- 512 GB RAM

3 months

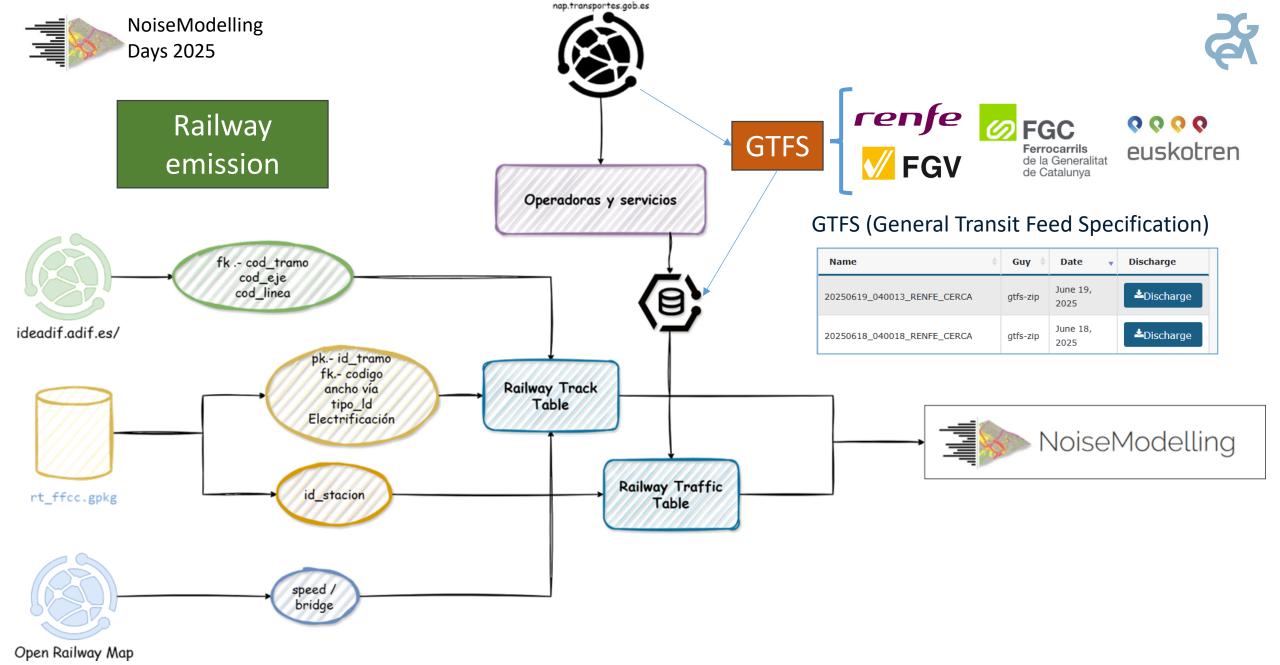
Calibration Process

Calibration using official SNMs from 12 Spanish cities

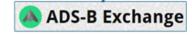
• 8.7 million matched point-pairs used

Linear regression applied to adjust model output

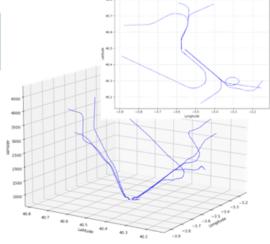
Original model overestimated by ~3.6 dB on average

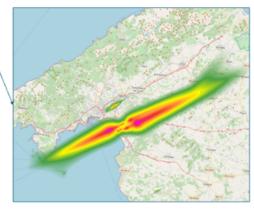

Result: Calibrated LAEQCal closely aligns with reference values

Calibrated model underestimated by ~1.96 dB on average



AIRCRAFT NOISE


Flight data


Field	OpenSky	ADSB Exchange
icao24 / icao	✓	✓
callsign / flight	✓	✓
latitude	✓	✓
longitude	~	✓
baro_altitude	✓	✓
geo_altitude	✓	✓
velocity / gs	✓	✓
heading / track	✓	✓
vertical_rate	✓	✓
on_ground	✓	✓
timestamp	✓	✓
origin_country	✓	×
category	×	<u> </u>

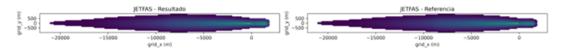
Segmentation

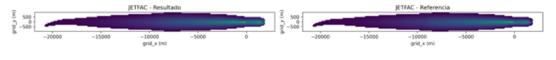
Variable	r	Mean Diff.
λ (ft)	1.000	0.000
d _p (ft)	1.000	0.063
d ₁ (ft)	1.000	0.343
d ₂ (ft)	1.000	0.349
q (ft)	1.000	-0.171
Lat_displ (ft)	1.000	0.058
d_NPD (ft)	1.000	0.065
Thrust _p (lb/e)	0.993	-42.960
β (°)	0.950	1.315
γ (°)	1.000	0.000
ф (°)	0.947	1.281
θ_bank (°)	1.000	0.000

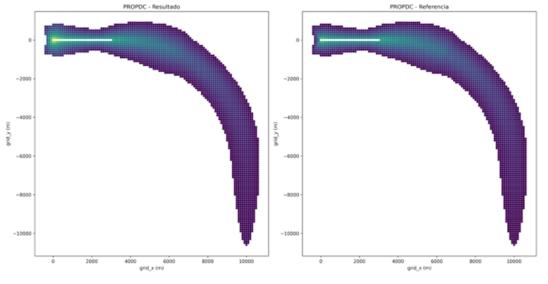
Noise calculation

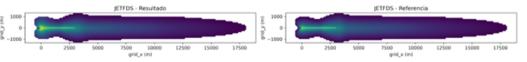
Variable	r	Mean Diff.		
SEL_base (dB)	0.997	0.245		
ΔI(φ) (dB)	0.822	0.148		
Λ(β, ℓ) (dB)	0.943	-0.245		
ΔV (dB)	0.976	0.740		
ΔF (dB)	0.985	-0.979		
ΔSOR (dB)	_	0.255		
Δlmp (dB)	-	-0.070		

Variable	r	Mean Diff.
δ_RMS (dB)	0.986	2.4883
Mean Diff. (dB)	_	0.333
Std Dev. (dB)	_	2.462




AIRCRAFT NOISE




MODELLED

REFERENCE ECAC 29

JETWDS - Resultado						JETWDS - Referencia											
€ 1000 5 0 6 -1000		1							(i) 1000 - (ii) 6 - 1000 - (iii) 6 - 1000 - (iii)	\$	1						
	ó	2500	5000	7500 grid_x	10000 (m)	12500	15000	17500	,	ò	2500	5000	7500 grid_)	10000 × (m)	12500	15000	17500

Case ID	r	Mean dB Diff.	δ_{RMS}
Global results	0.9738	0.1591	1.1897
JETFAC	0.9945	-0.1153	0.5211
JETFAS	0.9934	-0.1406	0.5774
JETFDC	0.9576	0.3253	1.6169
JETFDS	0.9579	0.3191	1.6150
JETWAC	0.9940	-0.0387	0.5292
JETWAS	0.9939	-0.0408	0.5305
JETWDC	0.9581	0.3975	1.6350
JETWDS	0.9583	0.3766	1.6332
PROPAC	0.9982	-0.0013	0.2805
PROPAS	0.9982	-0.0040	0.2805
PROPDC	0.9688	0.3343	1.4129
PROPDS	0.9686	0.2947	1.4131

Globally, an RMS Difference (δ RMS) of 1.1897 dB for the entire set of cases, with a correlation of 0.9738 and a mean difference of 0.1591 dB.

Next Steps

Access to Supercomputing (we have applied)

If granted, we will:

- Refine the Digital Terrain Model (DTM)
- Increase the receptor point density
 - → Higher spatial resolution and modelling accuracy

Traffic Modelling Improvements (ongoing)

Development of a more precise traffic model, with open data available.

Tools in use:

- OSMnx: for extracting and analysing road networks from OpenStreetMap
- SUMO (Simulation of Urban MObility): for traffic simulation and dynamic assignment, from Open Data MITMA

Thank you very much

Ignacio Soto Molina

Program Director - Environmental Noise

General Directorate of Environmental Quality and Assessment

Ministry for Ecological Transition and the Demographic Challenge, Spain

isoto@miteco.es

